Soil carbon and nitrogen storage in response to fire in a temperate mixed-grass savanna.

نویسندگان

  • X Dai
  • T W Boutton
  • M Hailemichael
  • R J Ansley
  • K E Jessup
چکیده

Vegetation fires may alter the quantity and quality of organic matter inputs to soil, rates of organic matter decay, and environmental factors that influence those processes. However, few studies have evaluated the impacts of this land management technique on soil organic carbon (SOC) and total N in grasslands and savannas. We evaluated the impact of repeated fires and their season of occurrence on SOC and total N storage in a temperate mixed-grass-mesquite savanna where fire is used to control woody plant encroachment. Four fire treatments varying in season of occurrence were examined: summer only (SF), winter only (WF), alternate summer and winter fires (SWF), and unburned controls. In each treatment, soils were sampled to 1 m under three vegetation types: C3 grasses, C4 grasses, and mesquite trees. The SOC storage at 0 to 20 cm was significantly greater in SF (2693 g C m(-2)) and SWF (2708 g C m(-2)) compared to WF (2446 g C m(-2)) and controls (2445 g C m(-2)). The SWF treatment also increased soil total N (271 g N m(-2)) relative to all other treatments (228-244 g N m(-2)) at 0 to 20 cm. Fire had no effect on SOC or total N at depths of > 20 cm. Vegetation type had no significant influence on SOC or total N stocks. The delta13C value of SOC was not affected by fire, but increased from -21 per thousand at 0 to 10 cm to -15 per thousand at depths of > 20 cm indicating that all treatments were once dominated by C4 grasses before woody plant encroachment during the past century. These results have implications for scientists, land managers, and policymakers who are now evaluating the potential for land uses to alter ecosystem C storage and influence atmospheric CO2 concentrations and global climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil organic carbon and black carbon storage and dynamics under different fire regimes in temperate mixed-grass savanna

[1] We quantified the effects of repeated, seasonal fires on soil organic carbon (SOC), black carbon (BC), and total N in controls and four fire treatments differing in frequency and season of occurrence in a temperate savanna. The SOC at 0–20 cm depth increased from 2044 g C m 2 in controls to 2393–2534 g C m 2 in the three treatments that included summer fire. Similarly, soil total N (0–20 cm...

متن کامل

Grass effects on tree (Prosopis glandulosa) growth in a temperate savanna

The majority of studies on woody–herbaceous interactions have focused on the effects of trees on grasses; relatively few have looked at grass effects on adult trees. In a two-year study in a temperate savanna in northern Texas, tree (Prosopis glandulosa) basal area increased significantly following removal of associated grasses, the response being highly variable in time and space. Tree respons...

متن کامل

Fire effects on temperate forest soil C and N storage.

Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N st...

متن کامل

Fire and Vegetation Effects on Productivity and Nitrogen Cycling across a Forest–grassland Continuum

Mixed tree–grass vegetation is important globally at ecotones between grasslands and forests. To address uncertainties vis-à-vis productivity and nitrogen (N) cycling in such systems we studied 20 mature oak savanna stands, ranging from 90% woody dominated to 80% herbaceous dominated, growing on comparable soils in a 32-yr-old fire frequency experiment in Minnesota, USA. Fire frequencies ranged...

متن کامل

The carbon and nitrogen storage capacity of soil in two enclosure and grazed ‎sites (Case study: Kote rangelands of Khash City)‎

Background and objectives: One of the most important components of rangeland ecosystems is soil that their degradation will reduce rangeland production capacity. About half of the world's lands are rangelands and they contain more than one-third of the biosphere carbon pool. Therefore, these lands have a high potential for carbon sequestration. This study was conducted to investigate the soil c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2006